
On Some Cryptographic Solutions for
Access Control in a Tree Hierarchy

Ravinderpal S. Sandhu

Department of Computer and Information Science
The Ohio State University

Columbus, OH 43210

ABSTRACT

We consider the access control problem in a system
where users and information items are classified into
security classes organized as a rooted tree, with the
most privileged security class at the root. In prac-
tise we expect such a tree to be quite broad and
shallow. It is also inevitable that new security
classes will need to be added as the needs of the or-
ganization evolve. We compare some cryptographic
techniques which have been proposed in the litera-
ture for solution of this problem.

1. INTRODUCTION

Let the users and information items in a computer
or communication system be classified into a rooted
tree of security classes SC,, SC,, SC,. The
notation SCi>SCj means that SCi is a predecessor of
SC. in the tree. Similarly SCi>SCi means that ei-
the: SC=SC. or SC.>,%‘..
SC, co&s dCj

If SCi>SC. we say that
Ealh us’,, is assigned’to a security

class called his clearance. And each item of infor-
mation, be it a file or a message, is assigned to a
security class called its sensitivity. Our requirement
is that users with clearance SCi can read or create
information items with sensitivity SCj if and only if
SCi covers SCj That is the higher up a security
class is in the tree the more privileged it is, with
the most privileged class at the root.

There are numerous examples of hierarchies where
such a classification scheme for access control is use-
ful. For instance, a corporate hierarchy with top
management at the root and security classes at suc-
cessive levels of the tree corresponding to divisions,
departments and projects. A manager of a division
will have clearance for the security class of that divi-
sion and thereby the authorization to access infor-
mation in all departments and projects within the
division. Members of a project team on the other
hand will be cleared only for that project and will
be unable to access information concerning other
projects including those within the same department.

We expect that practical tree hierarchies in such
applications will have at most a dozen levels or so.

The fan-out at the non-leaf nodes is likely to larger
say at most a few dozen. That is the tree is likely
to be quite broad and somewhat shallow. It is in-
evitable that a given hierarchy is likely to change
over the course of time, for instance as new depart-
ments and projects are created. We consider that
any scheme for solving the protection and sharing
problem in a hierarchy must be able to accom-
modate changes in the hierarchy with minimal dis-
ruption. This is a very important criterion, perhaps
even the most important one, for evaluating a
scheme.

Restricting the hierarchy to a rooted tree no doubt
excludes many partial orders. Nevertheless a rooted
tree is an important and naturally occurring special
case whose efficient implementation will certainly
have practical benefit. It should of course be pos-
sible to accommodate, at least “small”, deviations
from a tree hierarchy at the cost of some additional
effort. That is the mechanism should allow some
flexibility while accommodating a tree hierarchy
directly and efficiently.

In this paper we consider a number of cryp-
tographic schemes for solving the access control
problem in a tree hierarchy. Basic cryptographic
terminology and techniques used in these solutions
are reviewed in section 2. In section 3 we describe
and compare some proposals from the literature for
this and related problems [l, 7, 8, 11, 12, 151. We
have made no attempt to cover all published
schemes since this is beyond the scope of this paper.
The schemes discussed here just happen to be the
ones which are personally most familiar. Section 4
concludes the paper.

CH2468-7/87/0000/0405$01 .OO 0 1987 IEEE
405

2. CRYPTOGRAPHIC BACKGROUND

We assume that a conventional cryptosystem such
as DES 14, 131 is available with enciphering and
deciphering procedures E and D respectively. The
notation

u = EK(V)

means that u is the result of enciphering v using the

procedure E with key K. The deciphering procedure
with key K is used to recover v, i.e.

v = DK(u)

Information items can be cryptographically
protected by assigning a distinct key Ki to each
security class SC2, to be used for encrypting and
decrypting information classified in that class. When
an information item x with sensitivity SC; is to be
stored or transmitted in the system it is first
encrypted with key K, to obtain

Y = EY(x)

The item is then stored or transmitted as the pair
[name(SC,),y] where name(SCJ is the name of the
security class SC, The purpose of appending the
name of the security class to the encrypted form of
an information item is to indicate how to decrypt
the information. Only those users who somehow
know Ki will be able to decrypt y to obtain x from

x = DK/Y)

Our access control problem will be solved if we can
ensure that only those users whose security clearance
covers SCi are able to know K,

In the straightforward application of this idea a
user with security clearance SC; is given keys for all
security classes SC. covered by SC$ As observed by
Akl and Taylor [lf the disadvantage of this solution
is that a large number of keys are held by users
with security clearances high up in the hierarchy.
Moreover if new security classes are created, by
growing branches in the existing tree, keys for these
classes must be distributed to all users whose
clearance covers these new classes. This is a non-
trivial administrative task especially in a distributed
environment. It is particularly awkward that keys
for new security classes deep down in the tree will
need to be distributed to users with high security
clearance.

In this paper we consider solutions to the key
storage problem based on the idea that a user with
security clearance SC, needs to store only the key
Kc Keys for security classes SCi covered by SC, are

generated from Ki as needed. In this sense the key
Ki for security class SC; can be viewed as a master
key for all security classes covered by SC; in the
tree. It is desirable that the size of Ki be the same
for all security classes, or at least be of the same or-
der. Otherwise we can define Ki to include all keys
for security classes covered by SC,. The challenge is
to find a method by which it is easy to compute
keys for security classes covered by SCi but it is in-
tractable to compute keys for classes not covered by
sci.

In the next section we review and compare some
cryptographic solutions for the key storage problem
based on one-way functions. A one-way function is
easy to compute but computationally difficult to in-
vert. The use of one-way functions to conceal infor-
mation was first proposed for storing passwords in a
computer system (6, 10, 14, IS] and this has now
become a fairly standard practice. Their use for
safeguarding cryptographic keys was suggested by
Gudes [8] and has been applied in a number of dif-
ferent contexts [1, 2, 3, 7, 9, 11, 121.

To understand the use of one-way functions in
generating and safeguarding cryptographic keys it is
convenient to first consider the simple case where
the security classes are totally ordered, i.e. when
sc,>sc,>...>sc,. Akl and Taylor [l] describe the
following solution for this case. The key K1 for SC1
is arbitrarily selected. Keys for the other security
classes are iteratively generated by

Ki+l = f(Ki), i=l...n-1

where f is a publicly known one-way function. A
user with security clearance SCi is given the key Ki.
He can then easily compute the key Ef3 for all
security classes covered by SC< However, it is com-
putationally infeasible to compute Kj for a security
class SCj>SCi since this requires inversion of a one-
way function.

It is generally accepted that a good cryptosystem
can be used to implement a one-way function. For
instance the function f(x)=Ez(x) is one candidate.
Here x is encrypted using itself as the key. Another
possibility, often cited in the literature, is to to

encrypt some fixed and publicly known constant c
using x as the key, i.e. f(x)=E&c). In this case
computing the inverse of f(x) would amount to com-
puting the key x given that c encrypts as f(x). This
is a known plaintext attack from which good cryp-
tosystems are expected to be immune. One-way
functions constructed from block encryption al-
gorithms such as DES have the additional property
that they operate on fixed length blocks. For the
most part we can assume that x fits within one
block of b bits. Then f(x) requires no more than b
bits.

406

3. SOME CRYPTOGRAPHIC SOLUTIONS

We now consider three schemes for solving the key
storage problem all of which use one-way functions
but in very different ways. The one-way functions
used are of course assumed to be publicly available.
Pragmatic issues regarding the application of these
schemes are discussed in context of a broad and
shallow tree. We also consider how these schemes
will handle addition of a new subtree of security
classes.

Section 3.1 describes a solution based on a
parameterized family of one-way functions [15]. This
scheme requires no public information other the
definition of this family. It has the significant ad-
vantage that changes to the hierarchy are con-
veniently accommodated. We show that a broad
and shallow tree is a particularly good case for this
scheme. Section 3.2 consider solutions based on
cryptographic sealing [i’, 81. The idea is that keys
for the immediate children of SCi are encrypted
using K; and their encrypted forms are made
publicly available as sealed keys. Various methods of
applying this scheme are discussed. Finally section
3.3 discusses a scheme based on modular
ezponentiation [l, 11, 121 which solves the problem
for hierarchies which are arbitrary partial orders. A
major drawback however is that addition of new
security classes may require recomputation of the
keys for a large fraction of the existing classes. It is
shown that a broad and shallow tree is a par-
ticularly bad case for this scheme.

3.1. A FAMILY OF ONE-WAY FUNCTIONS

As mentioned earlier, a well known method for
constructing a one-way function is to encrypt some
fixed and publicly known constant c using x as the
key, i.e. f[x)=E,(c). We generalize this to obtain a
family of one-way functions by replacing the constant
by a parameter p, that is f,(x)=E,(p). Now com-
puting the inverse of f,(x) amounts to computing the
key x given that p encrypt: as j(x). So this is a
known plaintext attack wl.~h is infeasible for secure
cryptosystems. Hence f,(x) is a one-way function for
every p. We say the collection of functions f&x) is
a parameterized family of one-way functions.

Given such a publicly known family of one-way
functions, the keys for the security classes are
generated as follows.

1. For the security class at the root assign
an arbitrary key.

2. If SCj is an immediate child of SCi in the

tree let Kj=f~,,,(~~~)(Ki)=~~~~~ume(SCj)).

A user with security clearance SC; is given the key
Kc Since the family of one-way functions is publicly
known and the names of the security classes are
public, he can easily compute the key Kj for all
security classes SCj covered by SC; However it is
computationally infeasible to compute Kj for a
security class SCj>SC; since this amounts to the in-
version of one or more one-way functions.

Finally it should be computationally infeasible to
compute Kj from Ki for SCj incomparable with SC,
To see what this entails consider the simple case
where SCi and SC3 are immediate children of SC,.
Then

Ki=EK,(name(SCi))

Kj=EKk(name(SCj))

By the assumed security of the cryptosystem it is in-
feasible to compute Ki from Ki by solving the known
plaintext problem of the former equation to derive
Kk and then using the latter equation to compute
K3. For a strong cryptosystem we believe it can be

safely assumed that there will also be no other tract-

able method of computing Kj from K, in this situa-
tion. Moreover even if we know the keys for a large
number of siblings it will be infeasible to compute
the keys for a sibling outside the known set. That
is collusion among the siblings is infeasible. Similar
considerations apply to incomparable classes which
are not siblings.

This scheme accommodates hierarchical names for
the security classes quite readily. With hierarchical
names the immediate children of a security class
have distinct names but children of different security
classes may have the same name. When generating
keys for the security classes it is necessary that the
immediate children of SCi get distinct keys. So the
name used in our family of one way functions
EK(name(SC)) need only be the last field in the
unique pathname of SC in the tree hierarchy. Thus
the well known benefits of hierarchical names are
available in this scheme.

To estimate the computational overhead of this
scheme consider a tree hierarchy with 11 levels. A
user with clearance for the root will need up to 10
applications of the encryption algorithm to derive a
key for a security class at a leaf. If the same cryp-
tosystem is also used for enciphering and deciphering
information items this represents an overhead of
lO*b bits for each message or file, where b is the
block size of the cryptosystem. For DES b=8
(assuming there is a parity bit .on each byte) so the
overhead is effectively 80 bytes per information item.
For a large file with say 8000 bytes this overhead is
a negligible 0.1%. For a very small 80 byte file on
the other hand the overhead is 100%. In practice

407

:
. 1 1 . . ,... -“r :

we could also cache the recently derived keys so this
overhead gets amortized over a number of files and
messages rather than being incurred for each infor-
mation item. In any case these numbers suggest
that the overhead is quite tolerable and would
hardly be the limiting factor in application of this
scheme.

3.2. SEALED KEYS

Gudes [8] discusses a solution for the rooted tree
case in which for each security class SC, we have a

publicly available sealed key. Sealed keys are
generated as follows.

1. Select an arbitrary and distinct key K, for
each SC,.

2. gcd {t,]SC,~SCi} does not divide t;

A random secret key K, and a secret pair of large
primes p and q are selected whose product M is
made available publicly. The security class SCi is
assigned the key

K, = K2 mod M

2. The sealed key for SC, is E, (KJ where
SCk is the parent of SC, in th& hierarchy.
(The root has no sealed key.)

Thus knowledge of a key for a security class permits
decryption of the sealed keys for the children of that
class. By repeating this procedure a user who has
clearance for SC, can decrypt the sealed keys for
every SCj, such that SGi>SC~ The computational
overhead in computing these keys is exactly the
same as in the scheme of section 3.1. Addition of a
new security class as a leaf in the existing hierarchy
is easily accommodated by computing and making
available its sealed key.

Keys for security classes covered by SC, are easily
computed as follows.

Kj = Kj mod M = K;1
t Jti

mod M

If SGi~SGj by the first property tilt; is not an in-
teger and the computation of KJ from Ki is con-
sidered intractable provided M cannot be factored.
This requires that p and q have approximately a
hundred decimal digits each. The second property
prevents collusion among users in breaking the
scheme. Akl and Taylor propose the following
method for assigning ti’s.

A major issue in applying this idea is how to store
the sealed keys. The sealed keys can be distributed
publicly, which requires n*b bits with n security
classes and a cryptosystem with block size b. In a
distributed system the sealed keys may need to be
replicated at multiple sites. When new security
classes are created it will be necessary to update this
information at all sites. At the cost of some storage
overhead we can store the sealed keys for all ances-
tors of SC, in every file or message of sensitivity
SC,. This approach has the advantage that the
sealed keys needed to derive Ki are immediately
available. The only additional information needed is
one of the keys for the ancestors of SC,. The latter
solution is particularly usable in context of a shallow
broad tree, with new security classes being added
ever so often.

3.3. MODULAR EXPONENTIATION

Akl and Taylor [l] describe a mathematically
elegant solution for the general case where the
hierarchy on security classes is an arbitrary partial
ordering. In their method a publicly known integer
ti is assigned to each security class SC; with the fol-
lowing properties.

1. ti divides tj H SC,>SCj

1. Assign a distinct prime pi to each SCi

2. Let ti = II {pilSCi~SC3}

These t/s grow very rapidly with increasing number
of security classes, making it somewhat questionable
whether the method is practical. For n security
classes the value of these t;‘s are O((nlogZn)“) which
requires O(nlog2n). The time requirement for com-
puting a derived key is O(nlogln) multiplications [l].

Since the ti’s are public we require a total of
O(n210g2n) bits of public information. With n=lOO
this is =70K bits, which is sizable but not in-
tolerable. If n=lOOO we require a total of =lOM
bits. An alternative to making all t,‘s publicly avail-
able is to append ti to each encrypted information
item of sensitivity SC; Each file or message then
carried with it the information needed to decrypt it.
With a hundred security classes this represents an
overhead of ~700 bits per information item.

A broad and shallow tree is a particularly bad case
for the scheme of Akl and Taylor since such a tree
will have a large number of leaves, each of which is
incomparable with all other security classes. The
largest t;‘s will occur at the leaves and there wil1 be

many of them. The biggest drawback of the Akl
and Taylor scheme is that if a new security class is
added to the tree the ti’s and Ki’s for existing
security classes which do not cover the new class
will need to be recomputed. If a new leaf is added
to a broad and shallow tree this will involve a large
fraction of the existing security classes. For instance
in a tree with divisions, departments and projects at
successive levels the introduction of a new project
will require recomputation of the keys for all other
projects. It is particularly unfortunate that it will

408

also require recomputation of the keys for all depart-
ments and divisions to which the new project does
not belong. To avoid recomputation of the keys
when a new leaf is added, we might attempt to in-
itially set up a sufficient number of security classes
for a large number of divisions, departments and
projects and allocate these to new security classes as
they get created.

MacKinnon et al (11, 121 describe improvements to
the Akl and Taylor scheme which generate smaller
ti’s and show that these methods are optimal in
generating the smallest values of the t;‘s. The major
improvement is that instead of assigning a distinct
prime to each security class, they first decompose
the hierarchy into disjoint chains (linear orderings)
and assign a distinct prime only to each chain. The
classes in each chain are assigned increasing powers
of the prime assigned to the chain. Dilworth [5] has
shown that the minimal number of chains needed to
a decompose a hierarchy in this manner is equal to

the maximum size of an anti-chain (a set of elements
which are mutually incomparable). In a tree this
equals the number of leaves which in a broad and
shallow tree is going to be large. So in our context
the optimizations of MacKinnon et al do not appear
to have much impact. Moreover changes in the
hierarchy are not a part of their criteria so these
methods continue to require reassignment of keys
whenever the hierarchy is changed [12].

4. CONCLUSION

We have focused on cryptographic techniques for
access control in the special case of a tree hierarchy.

We expect these trees are likely to be quite broad
and shallow in practise. We also consider it in-
evitable that new subtrees will need to be added as
the requirements of the organization change.

We have reviewed and compared three techniques
which use one-way functions in different ways for
solving this problem. The technique based on
parameterized one-way functions [151 requires no
public information, other than the one-way functions.
Changes in the hierarchy are conveniently accom-
modated. The other two techniques require quite
substantial amount of public information in addition
to the one-way functions, although this is smaller
and increases linearly for sealed keys. The technique
based on sealing key records]S] can accommodate
changes in the hierarchy conveniently. The tech-
nique based on exponentiation]l] cannot handle
changes in the hierarchy dynamically. There are
other published techniques [2, 3, 7, 9] which we have
not been able to cover due to lack of time and their
omission is in no way intended as a negative com-
ment.

REFERENCES

111

14

PI

I41

PI

161

PI

PI

PI

[lOI

IllI

1121

Akl, S. G. and Taylor, P. D., “Cryptographic
Solution to a Problem of Access Control in a
Hierarchy”, ACM Transactions on Computer
Systems 1, 3 (Aug. 1983), 239-248.

Denning, D. E. and Schneider, F. B., “Master
Keys for Group Sharing”, Information
Processing Letters 1.2, 1 (Feb. 1981), 23-25.

Denning, D. E., Meijer, H., and Schneider,
F. B., “More on Master Keys for Group
Sharing”, Information Processing Letters IS,
3 (Dec. 1981), 125-126.

Denning, D. E., Cryptography and Data

Security, (Addison-Wesley, 1982).

Dilworth, R. P., “A Decomposition Theorem
for Partially Ordered Sets”, Ann. Math. Ser.
B 51 (1950), 161-166.

Evans, A., Kantrowitz, W. and Weiss, E., “A
User Authentication System not Requiring
Secrecy in the Computer”, CACM 17, 8
(Aug. 1974), 437-442.

Gifford, D. K., “Cryptographic Sealing for In-
formation Security and Authentication”,
CA CM 25, 4 (April 1982), 274-286.

Gudes, E., “The Design of a Cryptography
Based Secure File System”, IEEE Trans.
Softw. Engg. SE-6, 5 (Sept. 1980), 411-420.

Ingemarsson, I. and Wong, C. K., “A User
Authentication Scheme for Shared Data Based
on Trap-Door One-Way Functions”,
Information Processing Letters 12, 2 (Apr.
1981) 63-67.

Lamport, L., “Password Authentication with
Insecure Communication”, CACM 24, 11
(Nov. 1981), 770-772.

MacKinnon, S. and Akl, S. G., “New Key
Generation Algorithms for Multilevel Security”,
IEEE Symposium on Security and PrivacY

(April 1983), 72-78.

MacKinnon, S. J., Taylor, P. D., Meijer, H.,
and Akl, S. G., “An Optimal Algorithm for
Assigning Cryptographic Keys to Control Ac-
cess in a Hierarchy”, IEEE Transactions on
Computers C-34, 9 (Sept. 1985), 797-802.

409

.s..-

[13] National Bureau of Standards, Data Encryp-
tion Standard, (FIPS Publication 46, NBS,
1977).

[14] Purdy, G. B., “A High Security Log-In
Procedure”, CACM 17, 8 (Aug. 1974),
442-445.

[151 Sandhu, R. S., Cryptographic Implementation
of a Tree Hierarchy for Access Control,
(manuscript submitted to Znformation Process-
ing Letters, April 1987).

[16] Wilkes, M. V., Time-Sharing Computer Sys-
tems, (Elsevier/MacDonald, 1972).

410

